

Hermann Baum

Last update: 2024-03-19

mail@hermann-baum.de

https://hermann-baum.de/excel/hbSort/en/xlookup.php

mailto:mail@hermann-baum.de
https://hermann-baum.de/excel/hbSort/en/xlookup.php

hb/Tutorial Create Excel UDF 1 Last update: 2024-03-19

Contents

Foreword ... 2

Introduction ... 3

Small introductory example: The first Monday of the year .. 3

Focus of the tutorial: The function XLOOKUP2 .. 3

1. Syntax of the function .. 4

2. Evaluation of the parameter list ... 5

2.0 Parameter list in VBA .. 5

2.1 Evaluation of the 1st parameter... 6

2.2 Evaluation of the 2nd parameter ... 6

2.3 Evaluation of the 3rd parameter .. 8

2.4 Evaluation of the 4th parameter .. 9

2.5 Evaluation of the 5th parameter .. 9

2.6 Evaluation of the 6th parameter .. 9

2.7 Evaluation of the remaining parameters.. 10

3. Performing the search .. 11

4. Processing the return value .. 14

hb/Tutorial Create Excel UDF 2 Last update: 2024-03-19

Foreword

In Excel there are predefined functions such as SUM, IF, VLOOKUP, which can be used in the formula of a cell.

In addition, it is possible to add your own functions with special tasks, the so-called UDFs (User Defined

Functions).

One of the ways to make this happen is to program them using the VBA (Visual Basic for Applications)

programming language. This tutorial is about what needs to be considered and what difficulties you have to

overcome. Experience in using VBA is required.

The tutorial refers to the UDF named 'XLookup2'. An Excel file with the complete VBA code of this UDF can be

downloaded from this website:

https://hermann-baum.de/excel/hbSort/en/xlookup.php

https://hermann-baum.de/excel/hbSort/en/xlookup.php

hb/Tutorial Create Excel UDF 3 Last update: 2024-03-19

Introduction

In principle, any function programmed in a module that is not declared as 'Private' can be used as part of a

formula within a cell of the worksheet - just like the predefined functions. However, in order for them to

return results and not just return the #VALUE error code, some restrictions must be observed.

Restrictions:

1. The function names must not collide with the names of the predefined functions

2. The functions may only calculate and return values; they must not contain any actions such as changes

in cell content or changes in cell formatting or other properties of the Excel objects

3. Arrays of a specified data type can neither be passed as a parameter nor returned as a function result;

for this you have to use the data type 'Variant'

Small introductory example: The first Monday of the year

A UDF that takes a year as a parameter and returns the date of the first Monday of the New Year might look

like this:

Function FirstMonday(Year As Long) As Date

 Dim NewYearsDay As Date

 Dim dayNr As Long

 NewYearsDay = DateSerial(Year, 1, 1)

 dayNr = NewYearsDay Mod 7 'Saturday = 0

 If dayNr < 3 Then

 FirstMonday = NewYearsDay + 2 - dayNr

 Else

 FirstMonday = NewYearsDay + 9 - dayNr

 End If

End Function

Such a function can be called within the VBA code from other functions or procedures, and it can also be used

in a formula on the worksheet, e. g. =FirstMonday(B4).

Focus of the tutorial: The function XLOOKUP2

This tutorial focuses on creating a more complex UDF. It's a function called XLOOKUP2. It expands the already

diverse possibilities of the Excel function XLOOKUP.

It provides the following three abilities in addition to XLOOKUP:

✓ Search for multiple search criteria

✓ Use of wildcards within the search criteria

✓ Return all matches, not just the first one (optional)

The considerations of the XLOOKUP2 function are divided into four chapters:

1. Syntax of the function

2. Evaluation of the parameter list

3. Performing the search

4. Processing of the return value

hb/Tutorial Create Excel UDF 4 Last update: 2024-03-19

1. Syntax of the function

The first six parameters of the XLOOKUP2 function are the same as those of the XLOOKUP function. After the

sixth parameter, further pairs consisting of a search criterion and a search array can follow.

Syntax:

= XLookup2 (lookup_value1, lookup_array1, return_array, [if_not_found],

 [match_mode], [search_mode],

 [lookup_value2], [lookup_array2], [lookup_value3], [lookup_array3], ...)

Parameter Explanation

lookup_value 1 1st search criterion

lookup_array 1
Array or range in which the 1st search criterion is searched
(one-dimensional - single column or single row)

return_array Array or range from which found values are returned

if_not_found

(optional)
Text returned in place of the #N/A error code if nothing was found

match_mode

(optional)

Match type:

 0: Exact match search
(default)

 1: Invalid (generates the error #VALUE)

-1: Invalid (generates the error #VALUE)

 2: Search with wildcard-symbols,
the wildcards *, ?, ~ can be used for the search

search_mode

(optional)

Search mode:

 1: Normal search order starting with the first item;
the first match found is returned
(default)

-1: Reverse search order starting with the last item;
the first match found is returned

 2: Normal search order starting with the first item;
all matches are returned

-2: Reverse search order starting with the last item;
all matches are returned

lookup_value 2
(optional)

2nd search criterion

lookup_array 2
(optional)

Array or range in which the 2nd search criterion is searched
(one-dimensional - single column or single row)

lookup_value 3
(optional)

3rd search criterion

lookup_array 3
(optional)

Array or range in which the 3rd search criterion is searched
(one-dimensional - single column or single row)

etc. . . .

Search criteria that are not specified (just a comma) or contain the empty string have no effect on the search.

hb/Tutorial Create Excel UDF 5 Last update: 2024-03-19

2. Evaluation of the parameter list

The first step is to convert the parameter list of the cell function XLOOKUP2 into a parameter list of the VBA

function XLookup2. The second step then consists of reading the parameter values into corresponding VBA

variables.

2.0 Parameter list in VBA

There are several possible structures for parameter lists in VBA.

1. Mandatory parameters only

e. g. Function Name (p1 As long, p2 As String) As Double

2. Mandatory parameters and a fixed number of optional parameters

e. g. Function Name (p1 As long, p2 As String, Optional p3 As long = 1, _
 Optional p4 As long = 0)

3. Mandatory parameters and a indefinite number of optional parameters

e. g. Function Name (p1 As long, p2 As String, ParamArray arg() As Variant) As String

In all three cases, the number of mandatory parameters can also be zero, so that one can also speak of six

different cases.

A mixture of individual optional parameters and the ParamArray is not possible. The ParamArray must be of

type Variant.

Since the first parameter can already be omitted in the XLOOKUP2 function, analogous to the XLOOKUP function,

we are only left with case 6: the parameter list consists only of the ParamArray.

The function has the following header in VBA:
Function XLookup2(ParamArray arg() As Variant)

The return type is not specified, so it is Variant. It has to be Variant because this function returns different data

types: ranges, arrays or single values - depending on the situation.

The first instruction is:
argCnt = UBound(arg)

The number of parameters is stored in the variable argCnt. Since the ParamArray is zero-based, the number 4

is stored here if 5 parameters were specified.

At least 3 parameters must be specified. Therefore, the next line of code ensures that an error code is

returned if there are fewer than 3 parameters:
If argCnt < 2 Then EXIT_BY_ERROR

The small auxiliary procedure EXIT_BY_ERROR has the advantage that it can be used in different UDFs. It

intentionally generates an error so that further execution of the function is aborted and the error code

#VALUE is returned.

Private Sub EXIT_BY_ERROR()

 Dim errorArr() As Long

 errorArr(0) = 1 'exit by #VALUE error

End Sub

Since the Redim statement is missing here, the error 'Index out of range' is generated. Because the XLookup2

function was called as a cell function, no error message appears, but the cell function responds with the error

code #VALUE.

hb/Tutorial Create Excel UDF 6 Last update: 2024-03-19

The number of search criteria results from the number of parameters. It is determined with the following

code:

 If argCnt < 6 Then

 critCnt = 1

 Else

 critCnt = (argCnt - 4) \ 2 + 1 'Explanation of the calculation term in Chap. 2.7

 End If

The different pairs consisting of search criterion and search array should be stored in the two arrays critArr

and lookArr. They are therefore dimensioned accordingly at this point:

 ReDim critArr(1 To critCnt)

 ReDim lookArr(1 To critCnt)

2.1 Evaluation of the 1st parameter

Reading the first parameter is easy:

 If IsMissing(arg(0)) Then

 critArr(1) = ""

 Else

 critArr(1) = arg(0)

 End If

The IsMissing function can be used to check whether a parameter was specified or whether only a comma was

set. In the second case, the empty string is entered as the first criterion. Criteria consisting of the empty string

have no effect on the search.

The various search criteria are stored in the array critArr. Therefore, this first parameter is stored in the

critArr(1) variable.

2.2 Evaluation of the 2nd parameter

The second parameter must be a range (object of type RANGE) or an array. This check does the statement
If Not IsArray(arg(1)) Then EXIT_BY_ERROR

The IsArray function returns FALSE even if the address of a single cell or an array that consists of only one

element is given as a parameter.

The next statement copies the values of the arg(1) variable to the lkArr variable:
lkArr = arg(1)

This is a critical point in that we must note that arg(1) can be either a range or an array. Of course, a user will

usually specify a range as a parameter and only in special cases an array. However, there are still cases where

formulas are used for this parameter that either return ranges – such as OFFSET – or often arrays of values.

The variable lkArr is initially an uninitialized variable of type Variant. There are now three cases to consider in

the copying process mentioned above:

1. arg(1) is a range.

In this case, lkArr becomes an array with the same dimensions as arg(1), ie a two-dimensional array

with 1 row and n columns or with n rows and 1 column.

2. arg(1) is an array consisting of n rows and one column.

Again, lkArr has the same dimensions as arg(1).

3. arg(1) is an array consisting of one row and n columns.

This is the critical case because the lkArr variable now only has one dimension and querying the 2nd

dimension with UBound(lkArr, 2) leads to a runtime error.

hb/Tutorial Create Excel UDF 7 Last update: 2024-03-19

I don't know why a single-column array has two dimensions while a single-row array has only one dimension.

Seems like a Microsoft bug to me.

Since this circumstance has to be taken into account in several places, the small procedure repairArray is used

as a workaround.

Private Sub repairArray(ByRef arr As Variant)

 Dim res As Variant

 Dim uBnd As Long

 Dim maxCol As Long

 Dim col As Long

 If Not IsObject(arr) Then 'arr is an array, not a range

On Error GoTo UBoundError 'Workaround for a single-row array

 uBnd = UBound(arr, 2)

 GoTo GoOn 'no error

UBoundError:

 maxCol = UBound(arr, 1)

 ReDim res(1 To 1, 1 To maxCol)

 For col = 1 To maxCol

 res(1, col) = arr(col)

 Next

 arr = res

 Resume GoOn

GoOn:

On Error GoTo 0

 End If

End Sub

It checks whether the relevant parameter is the critical 3rd case. If at the instruction
uBnd = UBound(arr, 2)

an error is thrown, the error is caught and the array is converted into a two-dimensional array

(1 row and n columns).

Now the dimensions can be determined:
 maxrowLook = UBound(lkArr, 1)

 maxcolLook = UBound(lkArr, 2)

If both the number of rows and the number of columns are greater than 1, the XLOOKUP2 function returns the

error code:
 If maxrowLook > 1 And maxcolLook > 1 Then EXIT_BY_ERROR

The variable byRow stores whether it is a horizontal search in the row (byRow = TRUE) or vertically in the

column (byRow = FALSE):
 byRow = (maxcolLook > 1)

The variable maxInd contains the number of rows or the number of columns - depending on whether the

search is horizontal or vertical:
 If byRow Then

 maxInd = maxcolLook

 Else

 maxInd = maxrowLook

 End If

For each search criterion there is an associated search array in the parameter list. Just as the search criteria

are stored in an array called critArr, the search arrays are stored in an array called lookArr. The variable

lookArr is thus an array of arrays.

hb/Tutorial Create Excel UDF 8 Last update: 2024-03-19

In the (rare) case of a horizontal search, the search array is converted from a single-row array to a single-

column array (1n matrix to n1 matrix conversion). This is done by the following code section:

 If byRow Then

 ReDim arr(1 To maxInd, 1 To 1)

 For ind = 1 To maxInd

 arr(ind, 1) = lkArr(1, ind)

 Next

 lookArr(1) = arr

 Else

 lookArr(1) = lkArr

 End If

In this way, the search criteria and search arrays are transferred to the actual search routines in a uniform

format.

2.3 Evaluation of the 3rd parameter

First, with the help of the isArray() function, it is again ruled out that a single value or the address of a single

cell was entered here:

 If Not IsArray(arg(2)) Then EXIT_BY_ERROR

After that, this parameter also requires special treatment for a completely different reason. Microsoft has

specified for its XLOOKUP function that, where possible, it does not return an array of values, but the range

containing those values. From the VBA point of view, it is not an array that is returned in these cases, but a

range object.

This has the following additional effect: A function call with the XLOOKUP function can be inserted as a

parameter into a function that expects a range as a parameter (see example at the end of the tutorial).

In the following code section, the isObject() function is therefore used to check whether the third

parameter is a range object or an array of values:

 If IsObject(arg(2)) Then

 Set retArr = arg(2)

 maxrowRet = retArr.Rows.Count

 maxcolRet = retArr.Columns.Count

 Else

 retArr = arg(2)

 Call repairArray(retArr)

 maxrowRet = UBound(retArr, 1)

 maxcolRet = UBound(retArr, 2)

 End If

In the first case, the values are not simply copied to the retArr variable, but with the statement

Set retArr = arg(2)

the variable retArr points to the same object as arg(2). It therefore has the type 'Range'.

The dimensions of the third parameter are stored in the variables maxrowRet and maxcolRet. The next two

statements generate an error if the length of the first search array does not match the corresponding

dimension of the return array:

 If byRow And (maxcolLook <> maxcolRet) Then EXIT_BY_ERROR

 If Not byRow And (maxrowLook <> maxrowRet) Then EXIT_BY_ERROR

hb/Tutorial Create Excel UDF 9 Last update: 2024-03-19

2.4 Evaluation of the 4th parameter

It may be that after the 3rd parameter nothing follows in the parameter list. In this case the variable argCnt

has the value 2. Therefore the evaluation starts with the IF statement

If argCnt >= 3 .

The VBA code for evaluating the 4th parameter is:

 If argCnt >= 3 Then

 If IsMissing(arg(3)) Then

 notFnd = CVErr(xlErrNA)

 Else

 notFnd = arg(3)

 End If

 Else

 notFnd = CVErr(xlErrNA)

 End If

Since the variable notFnd can be assigned an error type as well as a string, it must be of the variant type,

otherwise a runtime error may occur.

The expression CVErr(xlErrNA) returns the error #N/A. If the 4th parameter is not specified, the error code

#N/A appears in the cells in the case of zero hits. Otherwise, the value that was used for this parameter

appears. Outputting a fixed string (e.g. "#N/A" or "#NV" in German) instead of the expression CVErr(xlErrNA)

would be the worse solution, since the CVErr function outputs the error #N/A in the respective national

language.

2.5 Evaluation of the 5th parameter

The following VBA code ensures that the default value is 0 and values other than 0 or 2 result in an error:

 If argCnt >= 4 Then

 If IsMissing(arg(4)) Then

 mMode = 0

 Else

 mMode = arg(4)

 End If

 Else

 mMode = 0

 End If

 If mMode <> 0 And mMode <> 2 Then EXIT_BY_ERROR

2.6 Evaluation of the 6th parameter

The default value is 1 and values other than 1, -1, 2, or -2 result in an error.

 If argCnt >= 5 Then

 If IsMissing(arg(5)) Then

 sMode = 1

 Else

 sMode = arg(5)

 End If

 Else

 sMode = 1

 End If

 If sMode <> 1 And sMode <> 2 And sMode <> -1 And sMode <> -2 Then EXIT_BY_ERROR

hb/Tutorial Create Excel UDF 10 Last update: 2024-03-19

2.7 Evaluation of the remaining parameters

After the sixth parameter, an indefinite number of pairs consisting of search criterion and search array can

follow. The evaluation, i.e. checking and saving in the variables critArr and lookArr, therefore takes place in

a loop.

 If argCnt >= 6 Then

 For argNr = 6 To argCnt

 critNr = (argNr - 4) \ 2 + 1

 If argNr Mod 2 = 0 Then 'lookup criterion

 If IsMissing(arg(argNr)) Then

 critArr(critNr) = ""

 Else

 critArr(critNr) = arg(argNr)

 End If

 Else 'lookup array

 If Not IsArray(arg(argNr)) Then EXIT_BY_ERROR

 lkArr = arg(argNr)

 Call repairArray(lkArr)

 maxrowLook = UBound(lkArr, 1)

 maxcolLook = UBound(lkArr, 2)

 If maxrowLook > 1 And maxcolLook > 1 Then EXIT_BY_ERROR

 If byRow Then

 ReDim arr(1 To maxInd, 1 To 1)

 For ind = 1 To maxInd

 arr(ind, 1) = lkArr(1, ind)

 Next

 lookArr(critNr) = arr

 Else

 lookArr(critNr) = lkArr

 End If

 End If

 Next

 End If

The number of arguments has already been determined and saved in the variable argCnt (see Section 2.0).

Because the ParamArray is zero-based, the FOR loop starts with 6, which is the 7th parameter.

With the instruction
critNr = (argNr - 4) \ 2 + 1

the serial number of the criteria is determined. The first two parameters have the indices 0 and 1 in the array

arg(). They are given the index 1 in the arrays critArr and lookArr (1st pair of criteria). The second pair of

criteria, if any, has indices 6 and 7 in the arg() parameter list, the third pair of criteria has indices 8 and 9, and

so on.

This means that parameter indices 6 and 7 must lead to criterion index 2, parameter indices 8 and 9 to

criterion index 3, etc. For example, the number 4 is subtracted from the parameter index 7, the result, the

number 3, is divided by 2 using integer division (results in 1) and the number 1 is added. The result of the

calculation is 2.

In the same way, the parameter indices 8 and 9 lead to the criteria index 3.

The evaluation of the search criteria is analogous to the evaluation of the first search criterion (see Chapter

2.1) and the evaluation of the search arrays analogous to the evaluation of the first search array (see Chapter

2.2).

hb/Tutorial Create Excel UDF 11 Last update: 2024-03-19

3. Performing the search

The two parameters compare mode (0 or 2) and search mode (1, -1, 2, or -2) allow eight different cases.

match_mode

(optional)

Match type:

 0: Exact match search
(default)

 2: Search with wildcard-symbols,
the wildcards *, ?, ~ can be used for the search

search_mode

(optional)

Search mode:

 1: Normal search order starting with the first item;
the first match found is returned
(default)

-1: Reverse search order starting with the last item;
the first match found is returned

 2: Normal search order starting with the first item;
all matches are returned

-2: Reverse search order starting with the last item;
all matches are returned

The search for matches runs according to the following schedule:

For example, if it is a vertical search (search in the column), it is first checked whether all search criteria match

the respective first element of the corresponding search array (match of all search criteria in the first row).

This row is only considered a hit and the row number is saved in a "hit array" (variable indArr) if all search

criteria match.

In search modes 1 and -1, the search is aborted after the first hit found. In search modes 2 and -2, the search

continues to the end of the list and the row numbers of all hits are stored in the indArr array.

For performance reasons, four individual search routines with similar VBA code tailored to the four search

modes are used instead of a single search routine.

 If sMode = 1 Then

 indArr = SeqLookupAsc2Break(lookArr, critArr, mMode)

 ElseIf sMode = -1 Then

 indArr = SeqLookupDesc2Break(lookArr, critArr, mMode)

 ElseIf sMode = 2 Then

 indArr = SeqLookupAsc2All(lookArr, critArr, mMode)

 Else 'sMode = -2

 indArr = SeqLookupDesc2All(lookArr, critArr, mMode)

 End If

hb/Tutorial Create Excel UDF 12 Last update: 2024-03-19

Within each of these four search routines, a distinction is made between mMode = 0 (exact search) and

mMode = 2 (search with wildcards):

Function SeqLookupAsc2Break(lookArr As Variant, critArr As Variant, mMode As Long)

 ...

 If mMode = 0 Then

 ...

 Else 'mMode = 2

 ...

 End If

 SeqLookupAsc2Break = indArr

End Function

The following code excerpt shows the case of an exact search (match mode = 0) with return of all hits found

(search mode = 2), i.e. call of the search routine SeqLookupAsc2All.

If mMode = 0 Then

 ind = 1

 k = 0

 While ind <= maxInd

 gefunden = True

 For critNr = 1 To critCnt

 If (lookArr(critNr)(ind, 1) <> critArr(critNr)) And (critArr(critNr) <> "")

 Then

 gefunden = False

 Exit For

 End If

 Next

 If gefunden Then

 k = k + 1

 indArr(k) = ind

 End If

 ind = ind + 1

 Wend

Else 'mMode = 2

In the while loop, the variable ind iterates through all values from 1 to maxInd. The variable maxInd stores the

number of elements in the search array. For a vertical search (search in the column) this would be the number

of rows.

We stay with the example of a vertical search:

All search criteria must be checked in each row. A hit has only been found if all search criteria are met in a row.

This check of all search criteria within a row takes place in the inner FOR loop. The variable gefunden

initialized with TRUE is set to FALSE at the first mismatch. If it is still TRUE at the end of the FOR loop, there is a

hit.

The additional condition
... and (critArr(critNr) <> "")
ensures that search criteria consisting of the empty string have no effect.

The ELSE part (mMode = 2) only differs in a single line:

The test condition is no longer
If (lookArr(critNr)(ind, 1) <> critArr(critNr)) And (critArr(critNr) <> ""),
but
If (Not (lookArr(critNr)(ind, 1) Like critArr(critNr))) And (critArr(critNr) <> "").

hb/Tutorial Create Excel UDF 13 Last update: 2024-03-19

The Like operator compares a string to a pattern.

The syntax is:
<result> = <string> Like <pattern>.
Make sure that the string is to the left of the like operator and the pattern with the wildcards to the right.

Each of the four search routines returns an array with the variable name indArr, which contains the indices of

the hits found. If only the first hit is searched for (sMode = 1 or sMode = -1), the array contains at most one hit

index, which is stored in the indArr(1) variable.

If no hit was found, indArr(1)  = 0 .

The array indArr forms the basis for the subsequent processing of the return value of the XLOOKUP2 function.

hb/Tutorial Create Excel UDF 14 Last update: 2024-03-19

4. Processing the return value

The simplest case is when no match is found. Then the string specified in the 4th parameter or the default

value "#N/A" is returned. For this reason, processing begins with the following IF statement:

 If indArr(1) < 1 Then

 ret = notFnd

 Else

 ...

 End If

In any case, the variable ret should contain the return value. Since it is of type Variant, it can contain a string,

a numeric value, an array of values, or even a found range.

A range can be returned if a single match was searched for (search mode equals 1 or -1) and a range was

passed as the return array (3rd parameter).

The following code snippet shows how the individual rows found are assembled into a return array in the

event that all matches were searched for:

 If sMode = 2 Or sMode = -2 Then

 ReDim ret(1 To maxrowRet, 1 To maxcolRet)

 If byRow Then

 ...

 Else

 For row = 1 To maxrowRet

 For col = 1 To maxcolRet

 If indArr(row) >= 1 Then

 ret(row, col) = retArr(indArr(row), col)

 Else

 ret(row, col) = ""

 End If

 Next

 Next

 End If

 Else 'sMode = 1 or -1

The variable ret is resized to have the same dimensions as the return array (3rd parameter). All rows found

are transferred to the array ret in the order found. Empty strings are written in the remaining rows.

hb/Tutorial Create Excel UDF 15 Last update: 2024-03-19

If only the first match was searched for (search mode equals 1 or -1), the code looks a little different:

 Else 'sMode = 1 or -1

 If byRow Then

 ...

 Else

 If IsObject(retArr) Then

 Set ret = Range(retArr.Cells(indArr(1), 1), retArr.Cells(indArr(1), maxcolRet))

 Else

 ReDim ret(1 To 1, 1 To maxcolRet)

 For col = 1 To maxcolRet

 ret(1, col) = retArr(indArr(1), col)

 Next

 End If

 End If

 End If

The following should be noted here:

If the return array (3rd parameter) is a range and not an array, then the XLOOKUP2 function should return the

found range and not an array.

It is therefore checked whether the variable retArr is an object – and therefore a range. If so, the ret variable

is assigned a reference to the found Range object:

Set ret = Range(retArr.Cells(indArr(1), 1), retArr.Cells(indArr(1), maxcolRet))

As a reminder: The variable indArr(1) contains the row number of the row found. With their help, a Range

object is formed that contains the row found.

If the return array (the 3rd parameter) is not a Range object, the hit row values are copied into the ret

variable. In this case, the variable ret is a two-dimensional array that only consists of one row – or in other

words: a 1n matrix.

Now you might think that you only need to add the final statement XLookup2 = ret. But then the function

would return an array of values in any case. If you want to return a range object, the statement is:

Set XLookup2 = ret.

Since this would lead to a runtime error in the case of an array, a case distinction is required:

 If IsObject(ret) Then

 Set XLookup2 = ret

 Else

 XLookup2 = ret

 End If

In this way, the XLOOKUP2 function, analogous to the XLOOKUP function, returns a range in the event of a

successful search for a single hit. This range could then be used as a parameter in a function that requires a

range as a mandatory parameter, such as the OFFSET function.

Here's an example:

The following formula is a valid function call:

=OFFSET(XLookup2(I25,C4:C23,B4:G23,,0,1),0,2,1,3)

The XLOOKUP2 function returns a hit row from the range B4:G23, which serves as the basis for the OFFSET

function.

